Q & A with Robotics Designer Kathleen O’Donnell

TEDMED: You mentioned in your Talk that as you became more involved in medical robotics, you realized there are many non-traditional approaches to robotics. The exosuit, a soft wearable robot being a great example of a non-traditional robot. Are there any other innovative designs in the field of medical robotics that stand out to you, or that you have worked on recently?

Kathleen O’Donnell: There are tons of interesting robotics approaches out there! I recently read an article in Nature about a system that consists of individual robotic elements that come together and behave cooperatively to achieve locomotion and other complex tasks, similar to the way that the cells of living organisms work together to achieve complex functional behaviors. This example really helps to highlight the massive diversity in robotic approaches today.

TM: New technologies often require a lot of time and money to create. Are these things the biggest barriers to creating new innovations in medical robotics?

KO: One reason that it takes so much time and money to create new innovations in medical robotics is that designs need to be iteratively tested in representative use scenarios to properly develop and validate the designs. Then you still have to begin your summative clinical and engineering testing to ensure that everything is performing safely, effectively, and in compliance with relevant regulatory agencies (such as the FDA). One thing that has really helped to accelerate the development of the exosuit is that from the very early stages, we always were able to involve stroke patients and physical therapists in the device testing, through an IRB-approved protocol. This “early and often” approach to testing with actual users of the device (both the therapists and the patients) helped to ensure that each iteration of development was helping to move us closer to our end goals and allowed us to course-correct before we got too far off track.

TM: The exosuit was adapted to address mobility issues stemming from neurological disease. Do you think soft wearable robots like the exosuit will be used in a more widespread way in the future?

KO: Absolutely! The Exosuit for Stroke Rehabilitation that I discussed during my Talk recently achieved several major milestones, including completion of a clinical trial and achievement of FDA clearance and CE marking, meaning that the exosuit is now commercially available for clinics in the US and Europe to purchase for use in their stroke rehabilitation programs, making this the first (of many) widespread clinical applications for soft exosuits. Furthermore, the technology which comprises the core functionality of the soft exosuit is essentially a platform technology that can be adapted to a wide variety of applications. By leveraging the knowledge gained from developing the exosuit for stroke rehabilitation, we can more quickly develop systems to support additional joints, such as the hip or the knee, as well as additional patient populations, such as MS, Parkinson Disease, or TBI, for example. It’s really exciting to see how the first exosuits have lead to such a robust pipeline of innovation.

Photo Credit: Wyss Institute

TM: In your Talk, you placed a great emphasis on the fact that the focus is always the people the technology is helping, do you think your experience as a patient plays a part in this mindset?

KO: I think my experience as a patient has certainly helped me to empathize with the patients we work with, and to understand why walking ability is such a powerful component of patients’ quality of life. However, even without this experience, I think it would be impossible to work as closely as we do with patients and therapists and not develop a deep sense of empathy and understanding for the challenges they encounter on a daily basis. The teams I have worked on have always placed an emphasis on going the extra mile to “get out of the lab” and better understand the people who are using these robots and understand what they are trying to achieve, and it is this mindset which continues to be instrumental to informing the design of exosuits throughout their evolution.